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Tuesday
Time

9:00 -
9:45

10:00 -
10:30

10:30 -
11:15

June 6, 2017
Description

Probabilistic
Dimensionality
Reduction

Coffee Break

Bayesian
optimization
for automating
model
selection

Speaker

Neil Lawrence,
University of
Sheffield and
Amazon
Research
Cambridge

Roman
Garnett,
Washington
University in
St. Louis

Wednesday

Time

9:00 - 9:45

10:30 -
11:15

11:30 -
12:15

June 7,
2017

Description

Bayesian
Calibration of
Simulators
with
Structured
Discretization
Uncertainty

Numerical
Gaussian
Processes for
Time-
dependent
and Non-
linear Partial
Differential
Equations

Variational
Reformulation
of the
Uncertainty
Propagation
Problem in
Linear Partial
Differential
Equations

Speaker

Oksana
Chkrebtii,
The Ohio
State
University

Maziar
Raissi,
Brown
University

llias
Bilionis,
Purdue
University

2:30 - 3:15
3:30 - 4:00
4:00 - 4:45

Bayesian
Probabilistic
Numerical
Methods.
(Part I)

Coffee/Tea
Break

Bayesian
Probabilistic
Numerical
Methods.
(Part II)

Chris
Oates,
Newcastle
University

Jon
Cockayne,
University
of
Warwick

GPs will be mentioned
in ~50% of the
workshop talks!



Data-driven modeling with Gaussian processes

“The linear algebra of

computation under uncertainty”

Priors over functions:  f ~ GP(u(x),

Marginalization:
p(fa,f5) ~ N(u,K). Then:

p(E) = | plEa, )it = A (s

fp

Posterior is also Gaussian:

p(fa,f5) ~ N(p,K). Then:
p(falfp) = N (pa + KapKys(f5

Rasmussen, C. E. Gaussian processes for machine learning (2006)
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Data-driven modeling with Gaussian processes

y=fx)+e f~GP(0, k(z,z'; )

Prior_ Posterior

Training via maximizing the marginal likelihood

1 1 N
logp(y|X,0) = 5 log | K + 21| — §yT(K + o)y — Bl log 27

Prediction via conditioning on available data

p(f*’yaxaw*) :N(f*’:u*aa-z)a
pa(4) = kunv (K 4 021) "y,
02(xy) = kys — kun (K + 021 k.,

Rasmussen, C. E. Gaussian processes for machine learning (2006)




Workflow

1.) Model specification: Choosing a prior
f~GP0,k(z,z';0))

2.) Training the model: Inference algorithm

1 1 N
logp(y|X,0) = =3 log |K + o2I| — §yT(K + o)y — Bl log 27

3.) Obtain predictions & quantify uncertainty
p(fely, X, @s) = N(f*m*,cff),
p(@2) = kv (K + 0217y,
02 (Ts) = Kux — kun (K + 021) " ks,

S

4.) Data acquisition
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increasing fidelity

A

Multi-fidelity modeling
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increasing fidelity
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Multi-fidelity modeling
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increasing fidelity

A

Multi-fidelity modeling
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Multi-fidelity modeling with GPs

Auto-regressive model: Predicting the Output from a Complex Computer Code When Fast
Approximations Are Available
fi(x) = pr—1(x) fr—1(x) + 0 (x) M. C. Kennedy; A. O’Hagan
=1,...,s Biometrika, Vol. 87, No. 1. (Mar., 2000), pp. 1-13.

20

Predictive posterior
p(f*’ya X, :13*) — N(f*|,LL*, O->|2<)7

,LL*(ZL‘*) = kin ‘ U?I)_lyv
o2 (22) = ke — ko (B 020) "o,

Ny

e N, |

Block covariance matrix

M.CKennedy, and A. 0'Hagan. Predicting the output from a complex computer code when fast approximations are available, 2000.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: ¥ = f(x) +¢€, f ~ GP (f]0, k(x,x";0))

Iteration: 1
8 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:| 3

Xp11 = argmax a(x;D,,) R
L x e,
Remark: ’
Acquisition functions aim to balance the '11 12 14 16 18 > 22 24 26 28 3
trade-off between exploration and v
exploitation. e.g. sample at the locations that maximize the expected improvement

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 2
9 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:| 3

Xp11 = argmax a(x;D,,) 2
\_ x ) % 1
Remark: 0
Acquisition functions aim to balance the E fe——l—— L)
trade-off between exploration and x
exploitation.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 3
10 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:| 3

Xp11 = argmax a(x;D,,) 2
\_ x ) % 1
Remark: 0
Acquisition functions aim to balance the E fe——l—— Lk L)
trade-off between exploration and x
exploitation.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 4
11 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;D,,)

\_ * ) g 1

Remark: v

Acquisition functions aim to balance the e )
trade-off between exploration and x

exploitation.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: o
12 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;D,,)

\_ * ) g 1

Remark: v

Acquisition functions aim to balance the E fe——l—— L
trade-off between exploration and x

exploitation.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 6
13 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;D,,)

\_ * ) g 1

Remark: v

Acquisition functions aim to balance the E fe———— Lt
trade-off between exploration and x

exploitation.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m]ié}z g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 7
14 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

Oé(X; Dn) — ]E’H]Ev | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;D,,)

\_ * ) g 1

Remark: v

Acquisition functions aim to balance the E et
trade-off between exploration and x

exploitation.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.



Some software packages

Gaussian processes: Bayesian optimization:
nttp://www.gaussianprocess.org/gpmi/ https://github.com/SheffieldML/GPyQpt
nttps://github.com/SheffieldML/GPy https://qithub.com/HIPS/Spearmint
ttps://github.com/GPflow/GPflow

Automatic differentiation: Probabilistic programming:
ttps://github.com/HIPS/autograd nttp://edwardlib.org
ttps://www.tensorflow.org nttp://mc-stan.org
nttp://deeplearning.net/software/theano/ nttps://pymc-devs.github.io/pymc3/index.html
ttp://pytorch.org
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