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tutorial._(Part_I)_]_Houman_Owhadi,_California_Institute_of_Technology.pdf)

12:30 - 2:30 Break for Lunch / Free Time

2:30 - 3:15 Computational Information
Games, a mini-tutorial. (Part II)

Houman Owhadi, California
Institute of Technology

11th Floor Lecture
Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Computational_Information_Games,_a_mini-

tutorial._(Part_II)_]_Houman_Owhadi,_California_Institute_of_Technology.pdf)

3:30 - 4:00 Coffee/Tea Break 11th Floor
Collaborative Space

4:00 - 4:45 Gaussian processes: A hands-on
tutorial

Paris Perdikaris,
Massachusetts Institute of
Technology

11th Floor Lecture
Hall

5:00 - 6:30 Welcome Reception 11th Floor
Collaborative Space

Tuesday June 6, 2017

Time Description Speaker Location Abstracts

9:00 -
9:45

Probabilistic
Dimensionality
Reduction

Neil Lawrence,
University of
Sheffield and
Amazon
Research
Cambridge

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Probabilistic_Dimensionality_Reduction_]_Neil_Lawrence,_University_of_Sheffield_and_Amazon_Research_Cambridge.pdf)

10:00 -
10:30

Coffee Break 11th Floor
Collaborative
Space

10:30 -
11:15

Bayesian
optimization
for automating
model
selection

Roman
Garnett,
Washington
University in
St. Louis

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Bayesian_optimization_for_automating_model_selection_]_Roman_Garnett,_Washington_University_in_St._Louis.pdf)

11:30 -
12:15

TBA Tamara
Broderick,
Massachusetts
Institute of
Technology

11th Floor
Lecture Hall

12:30 -
2:30

Break for
Lunch / Free
Time

2:30 -
3:15

Strong
convergence
rates of
probabilistic
integrators for
ordinary
differential
equations

Tim Sullivan,
FU Berlin Zuse
Institute Berlin

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Strong_convergence_rates_of_probabilistic_integrators_for_ordinary_differential_equations_]_Tim_Sullivan,_FU_Berlin_Zuse_Institute_Berlin.pdf)

3:30 -
4:00

Coffee/Tea
Break

11th Floor
Collaborative
Space

4:00 -
4:45

Bayesian and
Game
theoretical
numerical
method for
multiscale
PDEs

Lei Zhang,
Shanghai Jiao
Tong
University

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Bayesian_and_Game_theoretical_numerical_method_for_multiscale_PDEs_]_Lei_Zhang,_Shanghai_Jiao_Tong_University.pdf)

Wednesday June 7,
2017

Time Description Speaker Location Abstracts

9:00 - 9:45 Bayesian
Calibration of
Simulators
with
Structured
Discretization
Uncertainty

Oksana
Chkrebtii,
The Ohio
State
University

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Bayesian_Calibration_of_Simulators_with_Structured_Discretization_Uncertainty_]_Oksana_Chkrebtii,_The_Ohio_State_University.pdf)

10:00 - Coffee Break 11th Floor
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Thursday June 8, 2017

Time Description Speaker Location Abstracts Slides

9:00 - 9:45 Compression,
inversion, and
approximate PCA
of dense kernel
matrices at near-
linear
computational
complexity

Florian
Schaefer,
California
Institute Of
Technology

11th Floor
Lecture Hall

10:00 -
10:30

Coffee Break 11th Floor
Collaborative
Space

10:30 -
11:15

Inference using
partial
information

Jeff Miller,
Harvard
School of
Public Health

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Inference_using_partial_information_]_Jeff_Miller,_Harvard_School_of_Public_Health.pdf)

11:30 -
12:15

Exact solutions in
Burgers
turbulence and
the equation free
method

Govind
Menon, Brown
University

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Exact_solutions_in_Burgers_turbulence_and_the_equation_free_method_]_Govind_Menon,_Brown_University.pdf)

12:30 -
2:30

Break for Lunch /
Free Time

2:30 - 3:15 Numerical
analysis and
random matrix
theory

Tom Trogdon,
University of
California
Irvine

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Numerical_analysis_and_random_matrix_theory_]_Tom_Trogdon,_University_of_California_Irvine.pdf)

3:30 - 4:00 Coffee/Tea Break 11th Floor
Collaborative
Space

10:30 Collaborative
Space

10:30 -
11:15

Numerical
Gaussian
Processes for
Time-
dependent
and Non-
linear Partial
Differential
Equations

Maziar
Raissi,
Brown
University

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-4/Numerical_Gaussian_Processes_for_Time-dependent_and_Non-
linear_Partial_Differential_Equations_]_Maziar_Raissi,_Brown_University.pdf)

11:30 -
12:15

Variational
Reformulation
of the
Uncertainty
Propagation
Problem in
Linear Partial
Differential
Equations

Ilias
Bilionis,
Purdue
University

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Variational_Reformulation_of_the_Uncertainty_Propagation_Problem_in_Linear_Partial_Differential_Equations_]_Ilias_Bilionis,_Purdue_University.pdf)

12:20 -
12:20

Group Photo 11th Floor
Lecture Hall

12:30 - 2:30 Break for
Lunch / Free
Time

2:30 - 3:15 Bayesian
Probabilistic
Numerical
Methods.
(Part I)

Chris
Oates,
Newcastle
University

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Bayesian_Probabilistic_Numerical_Methods._(Part_I)_]_Chris_Oates,_Newcastle_University.pdf)

3:30 - 4:00 Coffee/Tea
Break

11th Floor
Collaborative
Space

4:00 - 4:45 Bayesian
Probabilistic
Numerical
Methods.
(Part II)

Jon
Cockayne,
University
of
Warwick

11th Floor
Lecture Hall

 (https://icerm.brown.edu/materials/Abstracts/tw-17-
4/Bayesian_Probabilistic_Numerical_Methods._(Part_II)_]_Jon_Cockayne,_University_of_Warwick.pdf)
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GPs will be mentioned 
in ~50% of the 
workshop talks!



Data-driven modeling with Gaussian processesInfinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs| {z }
fA

, fs+1, fs+2, · · · , fN| {z }
fB

) ⇠ N (µ,K).

with:

µ =


µA

µB

�
and K =


KAA KAB

KBA KBB

�

Marginalisation property:

p(fA, fB) ⇠ N (µ,K). Then:

p(fA) =

Z

fB

p(fA, fB)dfB = N (µA,KAA)

Marginalization:

Samples from a GP prior 

Priors over functions:

468th APS-DFD Meeting — Calibration of Blood Flow Simulations

Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty

94 Covariance functions
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.

4.2 Examples of Covariance Functions 85
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k⌫=p+1/2(r) = exp
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�
p
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

Rasmussen, C. E. Gaussian processes for machine learning (2006) 

Posterior is also Gaussian!

p(fA, fB) ⇠ N (µ,K). Then:

p(fA|fB) = N (µA +KABK
�1
BB(fB � µB),KAA �KABK

�1
BBKBA)

In the GP context this can be used for inter/extrapolation:

p(f⇤|f1, · · · , fN ) = p(f(x⇤)|f(x1), · · · , f(xN )) ⇠ N
p(f⇤|f1, · · · , fN) = p(f(x⇤)|f(x1), · · · , f(xN ))
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p(f(x⇤)|f(x1), · · · , f(xN )) is a posterior process!

Posterior is also Gaussian: 

Neural 
networks

Gaussian 
processes

Kernel 
machines

infinite 
limits

Bayesian 
inference

Dual 
functions

“The linear algebra of 
computation under uncertainty”



Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

Data-driven modeling with Gaussian processes

Training & prediction

Prediction:

the second kind, respectively. In what follows, we formulate the inference problem for the
case of homoscedastic noise, while we refer the reader to [] for a detailed outline of the
heteroscedastic case. To this end, we introduce ✓ = [�2

, ⌫,,�

2
✏

]T as a vector of hyper-
parameters which characterize the GP model, which are typically computed from the data
through maximum likelihood estimation.

If we consider a Gaussian likelihood p(y|f) = N (y|f ,�2
✏

I) then the posterior distri-
bution p(f |y,X) is tractable and can be used to perform predictive inference for a new
output f⇤, given a new input x⇤ as

p(f⇤|y,X,x⇤) = N (f⇤|µ⇤,�
2
⇤), (5)

µ⇤(x⇤) = k⇤N (K + �
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where k⇤N = [k(x⇤,x1), . . . , k(x⇤,x
N

)], k
N⇤ = k

T

⇤N , and k⇤⇤ = k(x⇤,x⇤). Predictions are
computed using the posterior mean µ⇤, while prediction uncertainty is quantified through
the posterior variance �

2
⇤.

The vector of hyper-parameters ✓ is determined by maximizing the marginal log-
likelihood of the observed data (the so called model evidence), i.e.,

log p(y|X,✓) = �1

2
log |K + �

2
✏

I|� 1

2
y

T (K + �
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✏

I)�1
y � N

2
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2.3 Introducing risk-averseness

If a point forecast of f is needed, then performing predictions using the posterior mean µ⇤
(see Eq. 6) would be the traditional choice. Carrying this into the an optimization context,
one might be led to consider the following substitute of Eq. 1:

min
x2X

µ⇤(x). (9)

If x⇤ and v

⇤ are the optimal solution and the optimal value of this problem, then what
can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
the expected value of f(x). Consequently, based on the information incorporated in the
posterior p(f |y,X), we have that

on “average” f(x⇤) = R
↵

((Y (x⇤; ⇠)) = v

⇤  R
↵

((Y (x; ⇠)) for all x 2 X .

In other words, we have obtained an x

⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x

⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
x

0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
point of view, we are risk-neutral with regard to the choice of x.

But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R

↵

. It seems then inappro-
priate to be insistent on risk-neutrality regarding our “modeling uncertainty” about f , but
insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3

Hyper-parameter estimation: 
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Assign priors over the hyper parameters and marginalize them out using MCMC.
Bayesian approach

fequentist approach

Rasmussen, C. E. Gaussian processes for machine learning (2006) 
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Training via maximizing the marginal likelihood

Prediction via conditioning on available data

Rasmussen, C. E. Gaussian processes for machine learning (2006) 

y = f(x) + ✏ f ⇠ GP(0, k(x,x0;✓))



Workflow

2.) Training the model: Inference algorithm

Training & prediction

Prediction:
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2.3 Introducing risk-averseness

If a point forecast of f is needed, then performing predictions using the posterior mean µ⇤
(see Eq. 6) would be the traditional choice. Carrying this into the an optimization context,
one might be led to consider the following substitute of Eq. 1:

min
x2X

µ⇤(x). (9)

If x⇤ and v

⇤ are the optimal solution and the optimal value of this problem, then what
can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
the expected value of f(x). Consequently, based on the information incorporated in the
posterior p(f |y,X), we have that

on “average” f(x⇤) = R
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((Y (x⇤; ⇠)) = v

⇤  R
↵

((Y (x; ⇠)) for all x 2 X .

In other words, we have obtained an x

⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x

⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
x

0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
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the randomness due to ⇠ through the use of the risk measure R
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. It seems then inappro-
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insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.
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Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

e.g. sample at the locations that maximize the expected improvement

The optimization problem is transformed to:

10

Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.

Bayesian optimization 
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Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x
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Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.

Bayesian optimization 

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization." Proceedings of the IEEE 104.1 (2016): 148-175.



Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

The optimization problem is transformed to:

10

Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.

Bayesian optimization 
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Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

The optimization problem is transformed to:
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Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.

Bayesian optimization 
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
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g(x)
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.

Bayesian optimization 
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Some software packages

Automatic differentiation: 
https://github.com/HIPS/autograd 
https://www.tensorflow.org 
http://deeplearning.net/software/theano/ 
http://pytorch.org

Probabilistic programming: 
http://edwardlib.org 
http://mc-stan.org 
https://pymc-devs.github.io/pymc3/index.html 

Gaussian processes: 
http://www.gaussianprocess.org/gpml/ 
https://github.com/SheffieldML/GPy 
https://github.com/GPflow/GPflow

Bayesian optimization: 
https://github.com/SheffieldML/GPyOpt 
https://github.com/HIPS/Spearmint

https://github.com/HIPS/autograd
https://www.tensorflow.org
http://deeplearning.net/software/theano/
http://pytorch.org
http://edwardlib.org
http://mc-stan.org
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http://www.gaussianprocess.org/gpml/
https://github.com/SheffieldML/GPy
https://github.com/GPflow/GPflow
https://github.com/SheffieldML/GPyOpt
https://github.com/HIPS/Spearmint

